430 research outputs found

    Loading of a surface-electrode ion trap from a remote, precooled source

    Full text link
    We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load ∼\sim 10610^6 neutral 88^{88}Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with a resonant laser into the trap region where they are subsequently photoionized and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present studies of the loading process and show that our technique achieves ion loading into a shallow (15 meV depth) trap at rates as high as 125 ions/s while drastically reducing the amount of metal deposition on the trap surface as compared with direct loading from a hot vapor. Furthermore, we note that due to multiple stages of isotopic filtering in our loading process, this technique has the potential for enhanced isotopic selectivity over other loading methods. Rapid loading from a clean, isotopically pure, and precooled source may enable scalable quantum information processing with trapped ions in large, low-depth surface trap arrays that are not amenable to loading from a hot atomic beam

    Ion traps fabricated in a CMOS foundry

    Get PDF
    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.Comment: 4 pages, 3 figure

    Improved constraints on non-Newtonian forces at 10 microns

    Full text link
    Several recent theories suggest that light moduli or particles in "large" extra dimensions could mediate macroscopic forces exceeding gravitational strength at length scales below a millimeter. Such new forces can be parameterized as a Yukawa-type correction to the Newtonian potential of strength α\alpha relative to gravity and range λ\lambda. To extend the search for such new physics we have improved our apparatus utilizing cryogenic micro-cantilevers capable of measuring attonewton forces, which now includes a switchable magnetic force for calibration. Our most recent experimental constraints on Yukawa-type deviations from Newtonian gravity are more than three times as stringent as our previously published results, and represent the best bound in the range of 5 - 15 microns, with a 95 percent confidence exclusion of forces with ∣α∣>14,000|\alpha| > 14,000 at λ\lambda = 10 microns.Comment: 12 pages, 9 figures, accepted for publication in PRD. Minor changes, replaced and corrected Figs 4,5,
    • …
    corecore